

I-FABP Monoclonal Antibody

Catalog No :	YM0352
Reactivity :	Human
Applications :	WB;IHC;IF;FCM;ELISA
Target :	I-FABP
Fields :	>>PPAR signaling pathway;>>Fat digestion and absorption
Gene Name :	FABP2
Protein Name ·	Fatty acid-binding protein intestinal
Human Cana Id .	
Human Gene Id :	2109
Human Swiss Prot	P12104
Mouse Swiss Prot	P55050
Immunogen :	Purified recombinant fragment of human I-FABP expressed in E. Coli.
Specificity :	I-FABP Monoclonal Antibody detects endogenous levels of I-FABP protein.
Formulation :	Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.
Source :	Monoclonal, Mouse
Dilution :	WB 1:500 - 1:2000. IHC 1:200 - 1:1000. IF 1:200 - 1:1000. Flow cytometry: 1:200 - 1:400. ELISA: 1:10000. Not yet tested in other applications.
Purification :	Affinity purification
Storage Stability :	-15°C to -25°C/1 year(Do not lower than -25°C)
Molecularweight :	15kD

Cell Pathway : PPAR; P References : 1. Yamada, K. et al. (1997) Diabetologia. 40(6):706-10 2. Georgopoulos, A. et al. (2000)85(9):3155-60 3. Kim, CH. et al. (2001) Metabolism. 50(4):473-6 4. Fisher, E. et al. (2006) Horm Met Background : The intracellular fatty acid-binding proteins (FABPs) belong to a multigene with nearly twenty identified members. FABPs are divided into at least three distinct types, namely the hepatic-, intestinal- and cardiac-type. They form kDa proteins and are thought to participate in the uptake, intracellular meta and/or transport of long-chain fatty acids. They may also be responsible in the modulation of cell growth and proliferation. Intestinal fatty acid-binding proteins epithelial cells. This gene has a polymorphism at codon 54 that identified are alanine-encoding allele and a threonine-encoding allele. Thr-54 protein is associated with increased fat oxidation and insulin resistance. [provided by RefSeq, Jul 2008],	
P References : 1. Yamada, K. et al. (1997) Diabetologia. 40(6):706-10 2. Georgopoulos, A. et al. (2000)85(9):3155-60 3. Kim, CH. et al. (2001) Metabolism. 50(4):473-6 4. Fisher, E. et al. (2006) Horm Met Background : The intracellular fatty acid-binding proteins (FABPs) belong to a multigene with nearly twenty identified members. FABPs are divided into at least three distinct types, namely the hepatic-, intestinal- and cardiac-type. They form kDa proteins and are thought to participate in the uptake, intracellular meta and/or transport of long-chain fatty acids. They may also be responsible in tmodulation of cell growth and proliferation. Intestinal fatty acid-binding proteins epithelial cells. This gene has a polymorphism at codon 54 that identified ar alanine-encoding allele and a threonine-encoding allele. Thr-54 protein is associated with increased fat oxidation and insulin resistance. [provided by RefSeq, Jul 2008],	
P References : 1. Yamada, K. et al. (1997) Diabetologia. 40(6):706-10 2. Georgopoulos, A. et al. (2000)85(9):3155-60 3. Kim, CH. et al. (2001) Metabolism. 50(4):473-6 4. Fisher, E. et al. (2006) Horm Met Background : The intracellular fatty acid-binding proteins (FABPs) belong to a multigene with nearly twenty identified members. FABPs are divided into at least three distinct types, namely the hepatic-, intestinal- and cardiac-type. They form 1 kDa proteins and are thought to participate in the uptake, intracellular meta and/or transport of long-chain fatty acids. They may also be responsible in the modulation of cell growth and proliferation. Intestinal fatty acid-binding proteins epithelial cells. This gene has a polymorphism at codon 54 that identified are alanine-encoding allele and a threonine-encoding allele. Thr-54 protein is associated with increased fat oxidation and insulin resistance. [provided by RefSeq, Jul 2008],	
 2. Georgopoulos, A. et al. (2000)85(9):3155-60 3. Kim, CH. et al. (2001) Metabolism. 50(4):473-6 4. Fisher, E. et al. (2006) Horm Met Background : The intracellular fatty acid-binding proteins (FABPs) belong to a multigene with nearly twenty identified members. FABPs are divided into at least three distinct types, namely the hepatic-, intestinal- and cardiac-type. They form kDa proteins and are thought to participate in the uptake, intracellular meta and/or transport of long-chain fatty acids. They may also be responsible in the modulation of cell growth and proliferation. Intestinal fatty acid-binding proteins epithelial cells. This gene has a polymorphism at codon 54 that identified are alanine-encoding allele and a threonine-encoding allele. Thr-54 protein is associated with increased fat oxidation and insulin resistance. [provided by RefSeq, Jul 2008],	
 3. Kim, CH. et al. (2001) Metabolism. 50(4):473-6 4. Fisher, E. et al. (2006) Horm Met Background : The intracellular fatty acid-binding proteins (FABPs) belong to a multigene with nearly twenty identified members. FABPs are divided into at least three distinct types, namely the hepatic-, intestinal- and cardiac-type. They form kDa proteins and are thought to participate in the uptake, intracellular meta and/or transport of long-chain fatty acids. They may also be responsible in the modulation of cell growth and proliferation. Intestinal fatty acid-binding proteins and is an abundant cytosolic protein in small integer epithelial cells. This gene has a polymorphism at codon 54 that identified are alanine-encoding allele and a threonine-encoding allele. Thr-54 protein is associated with increased fat oxidation and insulin resistance. [provided by RefSeq, Jul 2008], 	
 4. FISHER, E. et al. (2006) Horm Met Background : The intracellular fatty acid-binding proteins (FABPs) belong to a multigene with nearly twenty identified members. FABPs are divided into at least three distinct types, namely the hepatic-, intestinal- and cardiac-type. They form the kDa proteins and are thought to participate in the uptake, intracellular meta and/or transport of long-chain fatty acids. They may also be responsible in the modulation of cell growth and proliferation. Intestinal fatty acid-binding proteins epithelial cells. This gene has a polymorphism at codon 54 that identified are alanine-encoding allele and a threonine-encoding allele. Thr-54 protein is associated with increased fat oxidation and insulin resistance. [provided by RefSeq, Jul 2008], 	
Background : The intracellular fatty acid-binding proteins (FABPs) belong to a multigener with nearly twenty identified members. FABPs are divided into at least three distinct types, namely the hepatic-, intestinal- and cardiac-type. They form the kDa proteins and are thought to participate in the uptake, intracellular meta and/or transport of long-chain fatty acids. They may also be responsible in the modulation of cell growth and proliferation. Intestinal fatty acid-binding prote gene contains four exons and is an abundant cytosolic protein in small intege epithelial cells. This gene has a polymorphism at codon 54 that identified ar alanine-encoding allele and a threonine-encoding allele. Thr-54 protein is associated with increased fat oxidation and insulin resistance. [provided by RefSeq, Jul 2008],	
Eupction - domain: Forms a beta-barrel structure that accommodates the hydrophobi	family 4-15 polism he bin 2 tine
ligand in its interior.,function:FABP are thought to play a role in the intracelle transport of long-chain fatty acids and their acyl-CoA esters. FABP2 is prote involved in triglyceride-rich lipoprotein synthesis. Binds saturated long-chai acids with a high affinity, but binds with a lower affinity to unsaturated long- fatty acids. FABP2 may also help maintain energy homeostasis by function a lipid sensor.,induction:By EGF.,similarity:Belongs to the calycin superfam Fatty-acid binding protein (FABP) family.,tissue specificity:Expressed in the intestine and at much lower levels in the large intestine. Highest expression in the jejunum.,	ilar ably 1 fatty 2hain ng as ly. small levels
Subcellular Cytoplasm.	
Location :	
Expression : Expressed in the small intestine and at much lower levels in the large integration Highest expression levels in the jejunum.	tine.

Products Images

Western Blot analysis using I-FABP Monoclonal Antibody against FABP2-hIgGFc transfected HEK293 (1) cell lysate and LOVO (2) cell lysate.

Immunohistochemistry analysis of paraffin-embedded human Small Intestine tissues with AEC staining using I-FABP Monoclonal Antibody.

Immunofluorescence analysis of 3T3-L1 cells using I-FABP Monoclonal Antibody (green). Blue: DRAQ5 fluorescent DNA dye. Red: Actin filaments have been labeled with Alexa Fluor-555 phalloidin.

Flow cytometric analysis of LOVO cells using I-FABP Monoclonal Antibody (green) and negative control (purple).