

DLK1 Monoclonal Antibody

Catalog No :	YM0200
Reactivity :	Human
Applications :	WB;IF;FCM;ELISA
Target :	DLK1
Gene Name :	DLK1
Protein Name :	Protein delta homolog 1
Human Gene Id :	8788
Human Swiss Prot	P80370
No:	
Mouse Swiss Prot	Q09163
Immunogen :	Purified recombinant fragment of human DLK1 expressed in E. Coli.
Specificity :	DLK1 Monoclonal Antibody detects endogenous levels of DLK1 protein.
Formulation :	Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.
Source :	Monoclonal, Mouse
Dilution :	WB 1:500 - 1:2000. IF 1:200 - 1:1000. Flow cytometry: 1:200 - 1:400. ELISA: 1:10000. Not yet tested in other applications.
Purification :	Affinity purification
Storage Stability :	-15°C to -25°C/1 year(Do not lower than -25°C)
Molecularweight :	41kD
Cell Pathway :	Cell Growth

P References ·	1. Epigenetics, 2009 Oct 1:4(7):469-75
	2. Mol Biol Cell. 2009 Jul;20(14):3353-62.
Background :	This gene encodes a transmembrane protein that contains multiple epidermal growth factor repeats that functions as a regulator of cell growth. The encoded protein is involved in the differentiation of several cell types including adipocytes. This gene is located in a region of chromosome 14 frequently showing unparental disomy, and is imprinted and expressed from the paternal allele. A single nucleotide variant in this gene is associated with child and adolescent obesity and shows polar overdominance, where heterozygotes carrying an active paternal allele express the phenotype, while mutant homozygotes are normal. [provided by RefSeq, Nov 2015],
Function :	alternative products:Additional isoforms seem to exist,function:May have a role in neuroendocrine differentiation.,PTM:N- and O-glycosylated.,similarity:Contains 6 EGF-like domains.,subunit:Monomer.,tissue specificity:Found within the stromal cells in close contact to the vascular structure of placental villi, yolk sac, fetal liver, adrenal cortex and pancreas and in the beta cells of the islets of Langerhans in the adult pancreas. Found also in some forms of neuroendocrine lung tumor tissue.,
Subcellular	Membrane; Single-pass type I membrane protein. Cytoplasm .
	Environmental in the entry work of the instance of the the state of the three states at the state of the stat
Expression :	Pound within the stromal cells in close contact to the vascular structure of placental villi, yolk sac, fetal liver, adrenal cortex and pancreas and in the beta cells of the islets of Langerhans in the adult pancreas. Found also in some forms of neuroendocrine lung tumor tissue.

Products Images

Western Blot analysis using DLK1 Monoclonal Antibody against human DLK1 (AA: 174-349) recombinant protein.

Immunofluorescence analysis of U251 cells using DLK1 Monoclonal Antibody (green). Blue: DRAQ5 fluorescent DNA dye. Red: Actin filaments have been labeled with Alexa Fluor-555 phalloidin.

Flow cytometric analysis of NIH/3T3 cells using DLK1 Monoclonal Antibody (green) and negative control (red).