

Mannose Phosphate Isomerase mouse mAb

Catalog No: YM1237

Reactivity: Human;Rat

Applications: WB;ICC

Target: Mannose Phosphate Isomerase

P34949

Q924M7

Fields: >>Fructose and mannose metabolism;>>Amino sugar and nucleotide sugar

metabolism;>>Metabolic pathways;>>Biosynthesis of cofactors;>>Biosynthesis of

nucleotide sugars

Gene Name: mpi

Human Gene Id: 4351

Human Swiss Prot

No:

Mouse Swiss Prot

No:

Immunogen: Purified recombinant human Mannose Phosphate Isomerase protein fragments

expressed in E.coli.

Specificity: This antibody detects endogenous levels of Mannose Phosphate Isomerase and

does not cross-react with related proteins.

Formulation: Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

Source: Monoclonal, Mouse

Dilution: wb 1:1000 icc 1:300

Purification: The antibody was affinity-purified from mouse ascites by affinity-

chromatography using epitope-specific immunogen.

Concentration: 1 mg/ml

Storage Stability: -15°C to -25°C/1 year(Do not lower than -25°C)

1/3

Observed Band: 54kD

Cell Pathway: Fructose and mannose metabolism; Amino sugar and nucleotide sugar

metabolism;

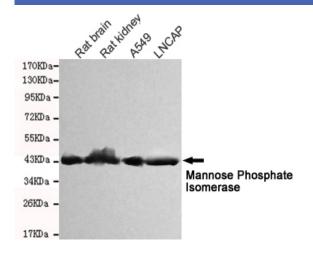
Background: Phosphomannose isomerase catalyzes the interconversion of

fructose-6-phosphate and mannose-6-phosphate and plays a critical role in maintaining the supply of D-mannose derivatives, which are required for most glycosylation reactions. Mutations in the MPI gene were found in patients with carbohydrate-deficient glycoprotein syndrome, type lb. Alternative splicing results

in multiple transcript variants. [provided by RefSeq, Jan 2014],

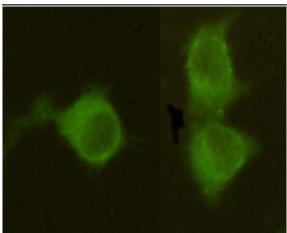
Function: catalytic activity:D-mannose 6-phosphate = D-fructose

6-phosphate.,cofactor:Binds 1 zinc ion per subunit.,disease:Defects in MPI are the cause of congenital disorder of glycosylation type 1B (CDG1B) [MIM:602579]; also known as carbohydrate-deficient glycoprotein syndrome type Ib (CDGS1B). Congenital disorders of glycosylation are metabolic deficiencies in glycoprotein biosynthesis that usually cause severe mental and psychomotor retardation. They are characterized by under-glycosylated serum glycoproteins. CDG1B is clinically characterized by protein-losing enteropathy.,function:Involved in the synthesis of the GDP-mannose and dolichol-phosphate-mannose required for a number of critical mannosyl transfer reactions.,pathway:Nucleotide-sugar biosynthesis; GDP-D-mannose biosynthesis; alpha-D-mannose 1-phosphate from D-fructose


6-phosphate: step 1/2., similarity: Belongs to the mannose-6-phosp

Subcellular Location:

Cytoplasm.


Expression: Expressed in all tissues, but more abundant in heart, brain and skeletal muscle.

Products Images

Western blot detection of Mannose Phosphate Isomerase in Rat kidney,Rat brain,A549 and Lncap cell lysates and using Mannose Phosphate Isomerase mouse mAb (1:1000 diluted).Predicted band size: 54KDa.Observed band size: 45KDa.

Immunocytochemistry stain of Hela using Mannose Phosphate Isomerase mouse mAb (1:300).